skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Biggs, Mary A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Alpha-synuclein (ASyn) is a protein that is known to play a critical role in Parkinson’s disease (PD) due to its propensity for misfolding and aggregation. Furthermore, this process leads to oxidative stress and the formation of free radicals that cause neuronal damage. In this study, we have utilized a biomimetic approach to design new peptides derived from marine natural resources. The peptides were designed using a peptide scrambling approach where antioxidant moieties were combined with fibrillary inhibition motifs in order to design peptides that would have a dual targeting effect on ASyn misfolding. Of the 20 designed peptides, 12 were selected for examining binding interactions through molecular docking and molecular dynamics approaches, which revealed that the peptides were binding to the pre-NAC and NAC (non-amyloid component) domain residues such as Tyr39, Asn65, Gly86, and Ala85, among others. Because ASyn filaments derived from Lewy body dementia (LBD) have a different secondary structure compared to pathogenic ASyn fibrils, both forms were tested computationally. Five of those peptides were utilized for laboratory validation based on those results. The binding interactions with fibrils were confirmed using surface plasmon resonance studies, where EQALMPWIWYWKDPNGS, PYYYWKDPNGS, and PYYYWKELAQM showed higher binding. Secondary structural analyses revealed their ability to induce conformational changes in ASyn fibrils. Additionally, PYYYWKDPNGS and PYYYWKELAQM also demonstrated antioxidant properties. This study provides insight into the binding interactions of varying forms of ASyn implicated in PD. The peptides may be further investigated for mitigating fibrillation at the cellular level and may have the potential to target ASyn. 
    more » « less
    Free, publicly-accessible full text available November 18, 2025
  2. In this work, five new peptides derived from natural resources and two peptide bolaamphiphiles were designed. The self-assembling ability of the peptides and the bolaamphiphiles, as well as their predicted antioxidant activity was examined computationally. In particular, replica modeling molecular dynamics studies were carried out at three different temperatures. Results showed that the bolaamphiphiles as well as three of the peptides efficiently formed spherical or fibrous assemblies, particularly at physiological temperatures. In addition, stacking interactions and hydrogen bonds played a critical role in assembly formation. Furthermore, molecular docking studies with extracellular matrix proteins such as the triple helix motif of collagen and the fibronectin (III) motif of tenascin-X displayed binding interactions with the peptides and the bolaamphiphiles. The most optimal peptide bolaamphiphile WMYGGGWMY-CO-NH-(CH2)4-YMWGGGYMW was then synthesized in the laboratory and its ability to form functional scaffolds upon binding to collagen and tenascin-X was examined. The scaffolds were bioprinted with co-cultures of fibroblasts and keratinocytes. The cells not only proliferated over time but also showed strong adherence and spreading within the matrix. Thus, the peptides and the bolaamphiphiles studied in this work, may be potentially developed as scaffold components for tissue regeneration applications. 
    more » « less
    Free, publicly-accessible full text available November 6, 2025
  3. In this work, we utilized a biomimetic approach for targeting KATO (III) tumor cells and 3D tumoroids. Specifically, the binding interactions of the bioactive short peptide sequences ACSAG (A-pep) and LPHVLTPEAGAT (L-pep) with the fibroblast growth factor receptor (FGFR2) kinase domain was investigated for the first time. Both peptides have been shown to be derived from natural resources previously. We then created a new fusion trimer peptide ACSAG-LPHVLTPEAGAT-GASCA (Trimer-pep) and investigated its binding interactions with the FGFR2 kinase domain in order to target the fibroblast growth factor receptor 2 (FGFR2), which is many overexpressed in tumor cells. Molecular docking and molecular dynamics simulation studies revealed critical interactions with the activation loop, hinge and glycine-rich loop regions of the FGFR2 kinase domain. To develop these peptides for drug delivery, DOX (Doxorubicin) conjugates of the peptides were created. Furthermore, the binding of the peptides with the kinase domain was further confirmed through surface plasmon resonance studies. Cell studies with gastric cancer cells (KATO III) revealed that the conjugates and the peptides induced higher cytotoxicity in the tumor cells compared to normal cells. Following confirmation of cytotoxicity against tumor cells, the ability of the conjugates and the peptides to penetrate 3D spheroids was investigated by evaluating their permeation in co-cultured spheroids grown with KATO (III) and colon tumor-associated fibroblasts (CAFs). Results demonstrated that Trimer-pep conjugated with DOX showed the highest permeation, while the ACSAG conjugate also demonstrated reasonable permeation of the drug. These results indicate that these peptides may be further explored and potentially utilized to create drug conjugates for targeting tumor cells expressing FGFR2 for developing therapeutics. 
    more » « less